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The Fokker-Planck-Kolmogorov (FPK) equation governs the probability density
function (p.d.f.) of the dynamic response of a particular class of linear or non-linear system to
random excitation. This paper proposes a numerical method for calculating the stationary
solution of the FPK equation, which is based upon the weighted residual approach using
Shannon wavelets as shape functions. The method is developed here for an n-dimensional
system and its relationship with the distributed approximating functional (DAF) approach is
investigated. For the purposes of validation, numerical results obtained using the proposed
method are compared with available exact solutions and numerical solutions for some
non-linear oscillators. For the systems considered excellent results over the main body and
tails of the marginal distributions are obtained. The accuracy and efficiency of the method
are investigated in comparison to the finite element method (FEM).
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1. INTRODUCTION

There exist many situations in engineering for which the excitation experienced by
engineering structures is random. Some examples of this are the wave and wind loading of
offshore structures and the seismic excitation of building structures. In the design of these
structures it is vital that the maximum stresses and fatigue life can be predicted so that
reliability of the structures can be established. In most cases, a probabilistic analysis is used
in which the statistical properties of the response are characterized. For those situations
when the system considered behaves linearly and the excitation is Gaussian, the response
statistics may be evaluated easily [1]. However, given that non-linearites are present to
some extent in most practical engineering structures, it is necessary to take these influences
into account when designing structures, since they can have a significant influence on the
response statistics of the system. This is particularly the case at the so-called “tails” of the
response distribution, which correspond to the larger responses of the structure and give an
indication of the probability of failure of the structure.

The Fokker-Planck-Kolmogorov (FPK) equation governs the probability density
function (p.d.f) of the response of a particular class of dynamical system to random
excitation. This class of system is applicable to systems for which the response is a Markov
process and includes linear and non-linear systems subjected to white-noise excitation. For
other systems, a FPK equation can be developed provided that the response is a higher
order Markov process. Much research effort has been directed at determining exact analytic
solutions to the FPK equation [2]. However, limited success in this area has led researchers
to develop approximate solution procedures, such as “stochastic averaging” (see, e.g.,
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reference [3]) and numerical techniques [4-15]. It is this final class of solution that is
considered in the present work.

Various numerical methods have been used to solve the FPK equation. A recent detailed
review of the techniques applied is given by Dunne and Ghanbari [9]. The most commonly
used methods include the weighted residual method (WRM) [4, 5], the finite element
method (FEM) [6-10], and the path integral method (PIM) [11-13]. A detailed comparison
of the FEM and WRM as applied to the stationary solution of the FPK equation has been
carried out recently by Dunne and Ghanbari [9]. Based upon computational efficiency in
terms of both CPU storage space and time, they concluded that the FEM developed by
Langley [6] was more favourable than the WRM. In addition, much effort has been
directed at using parallel processing to solve the transient FPK equation using the FEM
(see, e.g., [8, 107]). The PIM [11-13] uses the Chapman-Kolmogorov equation to map the
evolution in time of the (conditional) p.d.f from a specified initial state. Thus, the PIM
solution is well suited to obtaining transient non-stationary probabilities, and probabilities
of first-passage failures. After a sufficiently large number of time increments, the p.d.f.
converges to a stationary solution. The main advantage of the PIM is that it yields p.d.f.’s
that are non-negative, enabling high-accuracy solutions to be obtained at the tails. Recently,
Yu et al. [13] combined the PIM with a Gauss-Legendre scheme and obtained excellent
results for a Duffing oscillator down to p.d.f. values of 10~ '°. The disadvantage of the PIM
is that the transitional p.d.f, which maps the p.d.f. at one time step to the next, is
approximated to be locally Gaussian and as a result of this it is only accurate to the order of
dt®. For non-Gaussian systems, this time increment dt must be very small. Consequently,
a large number of iterations are usually required for the solution procedure to converge to
the stationary solution. Naess and Johnsen [ 11] have suggested a formula as a guide to the
maximum value of dt¢, but the formula is not suitable for all systems.

Recently, a new numerical method for solving certain types of partial differential
equation has been developed by Kouri and co-workers [ 16-207]. This method is based upon
the representation of the unknown response function as a convolution integral in terms of
the Dirac delta function. By discretizing this integral an approximation to the function is
obtained in terms of its “nodal” values. Provided that an appropriate representation of the
Dirac delta function is used, the expression can be differentiated to obtain the derivatives of
the function in terms of the nodal values. This so-called DAF approach has been shown to
yield highly accurate estimates of the function and its derivatives in terms of its nodal values
and provides a simple basis for solving partial differential equations. It has been applied to
a variety of problems in physics and has been shown to be both efficient and accurate. To
date, this technique has been applied to Burger’s equation [18] and Schrodinger’s [19]
equation, as well as a first order non-linear transient FPK equation [17].

This paper presents a novel numerical method for calculating the stationary solution
of the FPK equation. The proposed method is based upon using the weighted residual
approach with Shannon wavelets as shape functions. The method is developed for
an n-dimensional system and its relationship with the DAF approach is investigated.
More specifically, it is shown that the proposed method is identical to a slightly modified
version of the DAF approach. For the purposes of validation, numerical results using
the proposed method are compared with available exact solutions and numerical
simulation for some non-linear oscillators, and for the systems considered excellent results
over the main body and tails of the distribution are obtained. The accuracy and efficiency
of the method are compared to Langley’s finite element method (FEM). The results
indicate that the proposed approach is more accurate than the FEM when using the same
number of nodal/grid points, and uses coarser meshes to obtain similar (or higher) levels of
accuracy.
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2. THE FPK EQUATION

In order to apply the FPK equation it is convenient to express the equations of motion in
state-space notation as follows:

X = g(x) + Aw, (1)

where x is an n-dimensional vector containing the state-space variables of the system, A is
a square matrix (assumed here to be constant), w is a vector of uncorrelated Gaussian
white-noise processes, each having a spectral density of unity, and g(x) is a general vector
function of the variables x. For equations of motion of the form of equation (1), the vector
process x constitutes a Markov process and the joint probability density function (j.p.d.f.) of
the stationary response satisfies the stationary FPK equation as follows:
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where B;; is the ijth element of the matrix B given by B = 2zAA™. In addition to satisfying
equation (2), the j.p.d.f. must also satisfy the normalization condition as well as the
boundary condition that p(x) tends to zero as each of the state-space variables tends to
infinity.

In the following, a numerical solution of equation (2) is sought by using a weighted
residual approach with Shannon wavelets as shape functions.

3. WEIGHTED RESIDUAL APPROACH AND THE SHANNON WAVELET

Using the weighted residual approach, solutions to the FPK equation are sought by
multiplying equation (2) by a weighting function W (x) and numerically solving the resulting
equation for the j.p.d.f. Following this procedure, the equation to be solved is given by
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where all integrations extend over the entire domain ( — oo, o0 ). In order to solve equation
(3) it is usually assumed that the j.p.d.f. can be expressed as a sum of shape functions, the
amplitudes of which are determined by evaluating equation (3) for a number of weight
functions. Examples of this approach, as applied to the stationary FPK equation, are given
in Bhandari and Sherrer [4] and Langley [6]. Bhandari and Sherrer used weighted Hermite
polynomials as shape functions, while Langley used linear shape functions between nodal
values, i.e., the finite element method (FEM). In the latter formulation, it was necessary to
reduce equation (3) to the weak form of the equations since the second term appearing in
equation (3) involves second order derivatives and the shape functions are linear [6]. In the
proposed method, no advantage is gained by adopting the weak form of the equations, so
there is no need to consider the weak form of the equations here.

Before considering the proposed method it is beneficial to note that although, in
principle, any shape function can be used in the weighted residual approach, it is beneficial
to use shape functions which are orthogonal. This minimizes the coupling between shape
functions and has the added benefit of making the resulting equations relatively sparse in
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nature. It may be noted that the Gaussian-weighted Hermite polynomials used in Sherrer’s
WRM are orthogonal, while the linear shape functions used in the FEM are, strictly
speaking, not orthogonal. However, given that the latter shape functions are local in nature,
existing over only a finite region of the response domain, they possess some properties
similar to those of spatially orthogonal functions.

The weight functions adopted in the proposed method are Shannon wavelets. When
using these functions it is necessary to discretize the state-space variables representing the
response domain into a number of uniformly spaced grid points. Assuming that the x;th
state-space variable takes a minimum value of x;,;, and a maximum value of X;,,, X;j, the
jth grid point for the x;th variable, is defined as

Xij = Ximin + (J — D4, 4
where j =1,2,...,N; and 4; is the uniform grid spacing for the x;th variable given by

Ai = (ximax - ximin)/(Ni - 1)
Using these grid points, the shape functions used is defined as follows:

n

Wik, k(X) = l_[ w(X,, — ka",)a (3)
m=1
where k; = 1,2,...,N;, and
Sil‘l (Aﬁ (x,- — xij))
w(x; — xij) = : . (6)
Z(xi — Xij)

In equation (5) different shape functions are obtained by considering different combinations
of ki, ks, ... ,k,. Thus, by considering all possible combinations, equation (3) generates
NN, ... N, separate equations.

The shape function w(x; — X;;) is commonly known as the Shannon wavelet [21], but it is
also known in the literature as the sinc function or Whittaker’s cardinal function [22]. The
main properties of the Shannon wavelet are listed below:

(i) Sampling function. The Shannon wavelet acts as a sampling (interpolating) function, i.e.,

W(xi - Xj) == 5ij: (7)

where x; and x; are uniformly spaced grid points and J;; is the Kronecker delta. Thus, when
i =j the Shannon wavelet takes a value of unity, whilst on all other grid points it takes
a value of zero.

The terminology sampling function derives from its use in signal processing applications,
where it is used to reconstruct band-limited signals from knowledge of the original signal at
equally spaced intervals. Since the reconstructed signal is identical to the original signal at
the sample points, it is also known as an interpolating function; this latter terminology will
be used here. This property is useful in the proposed method and the DAF approach
described in section 4, as it ensures that the resulting matrix equations are relatively sparse
in nature.

(i) Spatial orthogonality. The Shannon wavelet is spatially orthogonal, such that

ijo
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where 0;; is the Kronecker delta. This property is particularly important here as it helps to
minimize the coupling between shape functions in the proposed method.

(ii1) Dirac delta function. Using the properties of the Fourier transform of the Shannon
wavelet [23], it can be shown that the following equation is satisfied:

,OCW(X - dx" dx”

J"" d"w(x — x;) dx — d"w(x; — xj). )

This result is valid for n =0,1,2,3,... and indicates that the Shannon wavelet acts as
a Dirac delta function when operating on itself and its derivatives. When n = 0, it may be
seen that equation (9) reduces to w(x; — x;). By making use of property (i), that w(x; — x;) =
0;j, it follows that this result is consistent with property (ii). Further, by using equation (9) it
can be deduced that, for the particular class of function h(x) such that

= > hxw(x — x)), (10)
the following result holds:
Wix — Xi)d h(x) dx = d"h(x; — x;) (1)
—w dx" dx”

where n =0,1,2, ....

In the following, properties (i)-(iii) of the Shannon wavelet are used within the proposed
weighted residual approach to determine a numerical solution procedure for the stationary
FPK equation.

In order to apply the weighted residual approach, as stated earlier, it is necessary to
express the j.p.d.f. as a weighted sum of shape functions. This is achieved here by letting

i >y ( [T W — xmzm)>p(xu,,lez, ) (12)

L=11=1 L=1\m=1

where it may be noted that the interpolating nature of the Shannon wavelet ensures that the
amplitude of the shape function is identical to the value of the j.p.d.f. on the grid points.
Thus, the proposed representation is similar to the FEM in that the j.p.d.f. is expressed in
terms of its nodal values.

To complete the weighted residual approach, equation (12) is substituted into equation
(3) and then the appropriate integrations are performed. For the purposes of presentation, it
is convenient to apply this procedure to the second term of equation (3), before considering
the first term.

Let us consider the second term of equation (3). Using equations (7-12) it may be shown
that

jWk o) 2P g

0x,;0x;
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where it may be noted that the terms involving w can be evaluated analytically using
equation (6).

Let us now consider the first term appearing in equation (3). Examination of equation (3)
reveals that the integrals appearing in the first term involve the general vector function g(x).
To avoid having to perform these integrals, which it may not be possible to do analytically,
p(x) g(x) can be expressed as a sum of shape functions, such that

p(x)g(x) = z‘ Z z ( n W(Xy — xmj,")>p(x1j19x2jzr s X V(X 1715 X2 jys e ee s Xgj)e (14)

ii=1jp=1  j,=1\m=1

Given that p(x) was expressed as a sum of shape function in equation (12), equation (14)
corresponds to replacing g(x) by some approximation, g,,,...(X) (say). Substituting equation
(12) into the left-hand side of equation (14) and rearranging, it is easy to show that

Zumon(X) = gy g (T WO — X DD (010 X255 5 X, ) 81 X275 -5 Xij)
approx -
;‘f; 1 Zzz 1 e Zi\:": 1( l_[nm: 1W(xm - xml,,,))p(xllp xllza ey xnl,,)
(15)

It is difficult in general to quantify the differences between g,,,...(x) and g(x) from this
equation. However, it may be deduced (using the interpolating nature of the Shannon
wavelet) that g,,,...(x) is identical to g(x) on the grid points. Thus, provided that the spacing
between grid points is sufficiently small, it is expected that g,,,...(x) will be a good
approximation to g(x). The validity of this argument has been confirmed numerically for
a variety of systems including those considered in the numerical examples section later.
However, it should be noted that the greatest discrepancies between g,,,...(X) and g(x) occur
near the edges of the mesh used and outside of the region covered by the mesh.

Using equations (7-11) and (14) it may be shown that

0
W10 Tsptxn ax
Xi
_ & Owlxa, — Xi)
B 1;1

ax g(xlkpXZkza "'7Xil;’ axnkn)p('xlkls -x2k2> >xil;7 "'a-xnk,,)' (16)
i

As with equation (13), the terms involving w can be evaluated analytically using equation
(6), while the vector non-linearity g will be known on the grid points.

Substituting equations (13) and (16) into equation (3), and considering all possible
combinations of k4, k,, ..., k,, a total of N{N, ... N, equations in terms of the NN, ... N,
unknown values of the j.p.d.f. on the uniform mesh of grid points is obtained. These
equations can be expressed in vector-matrix notation as follows:

Ap =0, (17)

where vector p contains the values of the j.p.d.f. on the mesh of grid points. For one-
dimensional systems matrix A is a fully populated matrix, while for two- and higher-
dimensional systems the population of matrix A is very much dependent upon the B;; terms
appearing in the second term of equation (2). For the systems considered in the numerical
examples section, the matrices are relatively sparse. The reason for this is that in these cases
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the FPK equation does not include any mixed derivative terms (because there is only one
excitation source) and the Shannon wavelet is an interpolating function. However, the
presence of mixed derivative terms will tend to increase the population of the matrix.
Non-trivial solutions to equation (17) are obtained by applying the normalization condition
and then solving numerically using standard techniques (see, e.g., reference [6]).

Having developed a weighted residual approach for the numerical solution of the
stationary FPK equation using Shannon wavelets as basis functions, the following section
considers the relationship of this method to the distributed approximating functional
approach.

4. DISTRIBUTED APPROXIMATING FUNCTIONAL APPROACH

The basic concept behind the distributed approximating functional (DAF) approach is to
represent the j.p.d.f. by the multi-dimensional convolution integral:

p(x) = f " 5(x — Yy dy. (18)

where dy = dydy, ... dy,,

n

ox —y) = []o(x; — i), (19)

i=1

and ¢ is the Dirac delta function.

In the DAF approach an approximate representation of the Dirac delta function is used
and the integration appearing in equation (18) is discretized using a finite uniform grid.
Following this procedure, the j.p.d.f. is approximated as follows:

p(X) = Zl i Z", < ]_[ 5(xm - xml,,,)Am>p(xlllsx2123 >xnl,,)s (20)

L=1L=1 I,=1\m=1

where 0(x) is an approximate representation of the Dirac delta function and 4,, denotes the
grid spacing along the mth state-space variable. All other notation used is in accordance
with that defined in section 3. In equation (18) the response domain x is identical to y. For
this reason, the discretized values of the y domain have been replaced by discretized values
of the x domain, where the uniform grid points used are identical to those defined in
equation (4). Finally, it is worthwhile noting that equation (20) has the same form as
equation (12) and that they would be identical if §(x)4 = w(x).

Provided that a suitable approximate representation of the Dirac delta function is
available, equation (20) can be differentiated analytically to determine the derivatives of p(x)
in terms of the values of p(x) on the grid points. Furthermore, since the Dirac delta function
d(x) peakes at x =0 and tends to zero as |x| —» oo, it may be deduced that the largest
contributions to the derivatives will arise from those grid values closest to the point
considered.

In the following, equation (20) is used as a means for determining a numerical solution to
the stationary FPK equation. In the standard DAF approach it is necessary to substitute
equation (20) into equation (2) and then evaluate the unknown values of the j.p.d.f. on the
grid points by setting the residual to zero when x lies on a grid point. This is equivalent to
using a series of Dirac delta functions centred on each grid point to weight the residual, and
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is identical to applying a collocation method. Following this procedure, it can be seen from
equation (2) that it is necessary to differentiate p(x) w.r.t. x;, where i = 1,2, ..., n. Provided
that the approximation to the Dirac delta function used is a continuous, twice differentiable
function, this can be achieved easily by differentiating equation (20). This is an important
feature of the DAF approach, and, in principle, it can be used to determine derivatives of
arbitrary order, making it a powerful computational tool for solving certain ordinary and
partial differential equations.

In certain respects the DAF approach is similar to the traditional PDE orthogonal
collocation method (OCM) [24]. Using this method, p(x) would be expressed as a weighted
sum of orthogonal shape functions, the amplitudes of which would be determined by setting
the residual to zero at the so-called “collocation” points. One of the most obvious
differences between this method and the DAF approach is that the DAF shape functions are
chosen to be approximations to the Dirac delta function which are not necessarily
orthogonal. Another difference is that the DAF approach yields amplitudes of the shape
functions which are effectively the value of p(x) at the grid points, while the OCM yields
amplitudes which must be manipulated further to determine p(x). Furthermore, in the
application described above, the DAF shape functions are chosen so that their equivalent
collocation points lie on a uniform grid, whilst those of the OCM would be the roots of the
highest orthogonal function used, which would tend not be uniformly spaced.

Here a slightly modified version of the DAF approach is presented which, with a suitable
choice of Dirac delta function, will be shown to be identical to the weighted residual
approach proposed in section 3. In this formulation, the modification corresponds to
expressing p(x)g(x), which appears in the first term of equation (2), as follows:

o0

Px)E(x) = f 5(x — Yp()Ew) dy. Q1)

— o0

In discretized form (i.e., as a sum of Dirac delta functions) this is approximated as

p(x)g(x) = Z Z Z < n 00X, — sz >P(X11,,X2123 s X, )8(X 11,5 X215 v Xig, ) (22)

L=1L=1 L=1\m=1

In principle, it is perfectly valid to adopt equation (21). However, since an approximate
representation of the Dirac delta function is used in equations (20) and (22), a degree of
approximation regarding the form of g(x) is introduced when adopting equation (22). This
approximation is similar to that introduced in equation (14), and can be shown to
approximate g(X) by g,,,..(X) (say) where

g P prox(x)

:Z?i':l =1 Zjvzl(nm 1 ijm) (X1 X2j s X ) 8(X 15, X2 s -, Xij)
;\:1:1 12 1 ZN—l(Hm 1 xmlm)Am)p(xlllsxﬂzs---axnl,,)

(23)

The accuracy of this approximation is very much dependent upon the approximation
used to represent the Dirac delta function. For example, if the representation of the Dirac
delta function used is an interpolating (sampling) function, such that

S(x; —x)4 =9 (24)

ijs
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where ¢;; is the Kronecker delta, then g,,,.,.(x) will be identical to g(x) on the grid points.

However, if a non-interpolating function is used, such as that obtained by expanding the

Dirac delta function as a weighted Hermite polynomial [16], then this will not be the case.
Using equation (22) it may be shown that:

[gx p(x)] = 2 S o S| T 06m — o)

L=1L,=1 =1\ m=1

Xi) 1P (X115 Xons - > Xt ) 8(X 115 X5 -+ > Xt ) A (25)

Following the standard DAF approach, the second term in equation (2) is evaluated using
equation (20) to give

N, N, N, n a
Z Z Z l_[ 0(X, — szm)Am F[é(xi - xizi)]
=1L=1 L=1|m=1 X;
m#i
m# j
0 ..
22p(x) - X 07, [o(x; — X )1P(X 11,5 X205 -0 X ) A j # B,
oxi0x; (26)
N, N, n
Z z z 1—[ 5(xm - xml,n)Am
L=11=1 L=1\m=1
m#i
('/;2
X [O(x; — Xu) 1P (X115 X215 -5 X )4 =i

Ox?

To complete the formulation of the DAF approach, equations (25) and (26) are substituted
into equation (2) and the unknown values of the j.p.d.f. on the grid points evaluated by
setting the residual to zero when x lies on a grid point. This is equivalent to using the Dirac
delta function to weight the residual, and is identical to applying a collocation method. In
general, this procedure results in N;N, ... N, equations in terms of the N;N,...N,
unknown values of the j.p.d.f. on the uniform mesh of grid points, and the equations can be
expressed in vector-matrix notation in a similar manner to equation (17).

For a practical implementation it is necessary to select an approximate representation of
the Dirac delta function which can be used in equations (25) and (26). A variety of
possibilities exist for this purpose. Before considering these it is worthwhile considering the
formal definition of the Dirac delta function, which is [25]

o if x=0
o(x) = ’ 27
) { 0  otherwise @7)

and

Jw S(x)dx = 1. (28)
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It should be noted that it is not practical to use the definition afforded by equation (27).
However, some representations exist which do satisfy equation (28). These include: (i) the
pulse function; (i) a weighted Hermite polynomial representation; and (iii) the Shannon
wavelet. Each of these is considered in what follows.

(i) Pulse function. This is the simplest possible representation of the Dirac delta function
and is given by

1 A4 A4
<x<

5(}6): Za E\X\§’
0

(29)
otherwise.

This representation is not well-suited to the DAF approach since it is neither continuous
nor differentiable. However, by using difference formulae to approximate the derivatives it
is possible to use equation (29) in equations (25) and (26). Following this procedure it may
be shown that the finite difference (FD) method is obtained. The main advantage of this
formulation is that the resulting matrices are extremely sparse. However, in practice a large
number of grid points are required to obtain accurate estimates of the derivatives and hence
the dimensions of the resulting matrix are prohibitively large, giving rise to excessively large
computing times.

(i1) Weighted Hermite polynomials. It is possible to express the Dirac delta function as
a weighted series of Hermite polynomials, such that [26]

1 x2\ & X
o(x) = E exp( - M)]{ZOHZk(O)HZk(O_)a (30)

where H; is the jth Hermite polynomial, and

1, k=0,
H,(0) = { (— D¥2k — 1)! .
m, k—1,2,3,...

1)

This representation is well-suited to the DAF approach and is known in the literature as
the Hermite DAF [16]. In contrast to the pulse function, this representation yields
a continuous, differentiable representation of the Dirac delta function. A practical
implementation of the method requires that the infinite series appearing in equation (30) be
truncated and a value of o chosen. Some success with this representation for solving the
stationary FPK equation of a non-linear oscillator subjected to white noise has been
reported recently by McWilliam [26]. However, the main disadvantage of this
representation is that it is not an interpolating function, and consequently always yields
matrix equations that are fully populated. For low order systems (i.e., 1-D and 2-D systems)
this does not provide much difficulty. However, for higher order systems it is likely that the
computer storage requirements will become excessive, leading to excessively long computer
run times.
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(ii1) Shannon wavelet. This representation is based upon approximating the Dirac delta
function as a band-limited function and is given by

5()6) = M’ (32)

X

where 4 is the uniform spacing between grid points. This representation is well-suited to the
DAF approach as it is continuous and differentiable. It also has the advantage over the
Hermite DAF in that it is an interpolating function, producing matrix equations that have
the potential to be relatively sparse. In addition to satisfying equation (28), it may be noted
that the Shannon wavelet also possesses certain orthogonal properties (see equation (8)).
The orthogonal properties are a fundamental characteristic of the Dirac delta function and
arise as a direct result of equation (27). A perceived disadvantage of equation (32) is that it
tends to zero quite slowly as |x| - oo (i.e., decays as 1/x). A direct consequence of this is that
when calculating the derivatives of the j.p.d.f. using equations (25) and (26) a large number of
the nodal values will contribute significantly. It is for this reason that Hoffman et al. {20]
have recently suggested using the Shannon-Gabor wavelet in the DAF approach, in which
the Dirac delta function is expressed as

5(x) = % exp< _ 2’:) (33)

where o is the standard deviation of the Gabor transform (or Gaussian window function).
Of course, as ¢ — o0, equation (33) tends to the Shannon wavelet. This representation has
the advantage that for finite o it tends to zero much more quickly than the Shannon wavelet
as |x| » oo. In some ways this improves the approximation to a Dirac delta function.
A consequence of this it that it ensures that derivatives at any one point are more dependent
on the neighbouring nodal values than on the nodal values further away from the point
considered. However, the presence of the Gaussian window in equation (33) destroys the
orthogonal properties possessed by the Shannon wavelet, effectively worsening the
approximation to a Dirac delta function.

In the following, the Shannon wavelet representation of the Dirac delta function is
adopted, and it is shown that this representation ensures that the (modified) DAF approach
is identical to the weighted residual approach described in section 3.

Replacing é(x — x;)4 by w(x — x;) in equations (25) and (26), where w(x — Xx;) is given by
equation (6), and letting

X = (xlkla x2k27 9xnk,,)a (34)

gives

0
——[&(9p(x)]

Xi X = (X 14,5 X2k550 5 Xnk,)

N, N, N, n a
= Z Z Z n W(X — th,,,) o [w(x; — Xil,-)]P(xu"lez; ,ann)g(xu,;xztp s Xt
L=1L=1 I=1 1 Xi

m#i

(35)
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and

% p(x)

0Xi0X|x = (x ke, k)

N, N, N, n 6
Z Z Z n W(xmk,,. - xmlm)Am a_[w(xik,,, - xili)]
L=1L=1 L=1|m=1 Xi
m#i
m# j
0
_ X a[w(xjki — X )IP(X 115 X205 -+ » Xt

j (36)

| n

Y Y - 3| T b, = )

L=11= m=1
m#i

2
Xﬁ [W(xiki - xil;)]l’(xu,,xzzz, ,an,,) J=1
i

Using the fact that the Shannon wavelet is an interpolating function (equation (7)) in
equations (35) and (36) and comparing the resulting expressions with equations (16) and (13)
respectively, it may be deduced that

o
 Tap] = [0 2 Lt ox @
i X = (X 14y sX2kz0eeen Xok,)
and
’p(x) P*p(x)
axiaxj X = (X 1k X ks 3 Xnk,,) JWk e ( ) ax ax] d (38)

The terms appearing on the left-hand side of equations (37) and (38) correspond to those
obtained using the modified DAF approach using Shannon wavelets to represent the Dirac
delta function. From these equations it may be seen that they are equivalent to those derived
using the weighted residual approach described in section 3, where Shannon wavelets are used
as shape functions. Thus it may be concluded that the weighted residual approach described
in section 3 is identical to a modified DAF approach (equations (16) and (13)) when Shannon
wavelets are used to represent the Dirac delta function. This result may be proved more
efficiently by noting that equations (20) and (22) ensure that p(x)g(x) and p(x) belong to the
particular class of functions (equation (10)) for which equation (11) holds. Consequently,
equations (37) and (38) follow immediately.

5. NUMERICAL EXAMPLES

This section considers the accuracy and efficiency of the proposed method for a number of
non-linear, single-degree-freedom systems with varying amounts of non-linearity. In all cases
the j.p.d.f’s are calculated and then integrated to give the marginal displacement and velocity
p.d.f’s which are more convenient to view. The marginal distributions are plotted on
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normalized axes, where the displacement and velocity are expressed in terms of the number of
standard deviations from the mean and the normalized p.d.f. value is obtained by multiplying
the marginal p.df. by the rm.s. response. In all cases they are plotted on linear and
logarithmic scales so that the accuracy of the proposed method over the main body and
“tails” can be examined. The results plotted on log-scales are especially important if the results
are to be used in extreme response calculations. Comparisons are made with an equivalent
Gaussian distribution to give an indication of the non-Gaussian nature of the response and
the exact analytic solution. Comparisons are also made with results obtained using Langley’s
finite element method (FEM) [6] so that the accuracy of the proposed method can be assessed
compared to the FEM. These comparisons are made qualitatively by comparing the marginal
densities on the same graphical scale and quantitatively by using two measures of error for the
marginal displacement p.d.f. The first measure of error e, is given by

Z (P(x:) = PexactX1)), (39)

where N(= N; = N,) defines the number of grid points used to discretize the response
domain, p(x;) is the calculated displacement p.d.f,, and p.....(x;) is the exact displacement p.d.f.
Equation (39) provides a general measure of the accuracy of the solution over the main body
of the distribution and was used by Langtangen [7] to investigate the accuracy of the FEM.
The second measure of error e, provides a measure of the accuracy of the solution at the
“tails” of the distribution and is given by

_ 1§ (PO) = Pesalx) Y’
€= / N,-;< Peaci(Xi) > ' w

Unlike the path integral method, the proposed method and the FEM are not guaranteed to
produce p.d.f’s that are always positive. When calculating response distributions using the
FEM and the proposed method, negative values tend to occur at the edges of the response
domain where assumptions are made regarding the form of the j.p.d.f. outside of the response
domain considered. Within the FEM this is usually taken into account by selecting response
domains for analysis that are much larger than the area of interest [6], confining the
least-accurate results to areas that are of little practical interest. This procedure will be
adopted here for both the proposed method and the FEM. As a consequence, the measure of
error given by equation (40) is restricted here to values of the marginal distribution p(x;) that
have values greater than 10~°. This method for assessing the error at the tails was first
adopted by Langtangen [7].

The efficiency of the solution procedure is assessed by comparing the CPU times (in s)
taken to execute the numerical procedure with those obtained using the FEM. The CPU
times it takes to generate and solve equation (17) on a UNIX Workstation are compared. To
provide an unbiased comparison NAG routine FO4AAF is used in all cases to solve the
resulting matrix equations. This routine uses a standard storage routine, which ensures that
computer storage space is proportional to mesh size. Use of this routine will undoubtedly
influence the performance of the techniques considered, since the sparse nature of coefficient
matrix A appearing in equation (17) (both for the proposed method and the FEM) is not
made use of. By using the same routine, both methods are subjected to the same constraint of
having to solve fully populated systems of equations. Given that the FEM yields coefficient
matrices that are less populated than the proposed method, this will hinder the performance
of the FEM more than the proposed method. The degree to which the FEM is hindered will
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TABLE 1

Comparison of CPU times (in s) to generate the coefficient matrix and solve the resulting
equations for the proposed method and FEM for different mesh sizes

Mesh size Proposed method Finite element method

(N{x N,) Generate matrix Solve equations Generate matrix  Solve equations
21 x 21 0-04 2:4 012 011
31x31 0-18 155 0-29 072
41 x 41 0-57 109 0-52 4
51 %51 1-4 524 079 11
61 x61 39 1496 1-15 29

be system dependent, since the space requirement depends on the scaling and structure of the
coefficient matrix [9]. For the systems considered here, the same systematic node numbering
is used for the proposed method and FEM. However, it is acknowledged that reductions in
the CPU time may be achieved by using sparse matrix routines, as indicated by the results
presented by Dunne and Ghanbari [9]. Furthermore, it is obvious that as the order of the
system increases, the storage requirement will increase quickly if fully populated matrices are
used. In these situations, sparse routines could be adopted. However, an alternative approach
may be to generate the transient response starting from suitable initial conditions until the
stationary response is reached.

The sparse nature of the coefficient matrix for the systems considered ensures that
the CPU times are (to a good approximation) dependent only on the number of nodal values
used. Consequently, the resulting CPU times are approximately system independent. Table
1 summarizes the CPU times for all of the numerical examples considered. (Note that
although respective times in seconds are stated, it is the relative magnitudes of these that are
important.) In each case two values are given: the first corresponds to the time taken to
generate the coefficient matrix, while the second corresponds to the time taken to solve the
resulting set of equations. It may be seen from Table 1 that the proposed method is more
numerically intense than the FEM to both generate and solve the coefficient matrix for
identical mesh sizes. However, in what follows it will be shown that the proposed method
yields results of superior accuracy to the FEM using much coarser meshes. Thus, provided
that the (total) CPU time using the proposed method with a coarser mesh is less than that
obtained using the FEM with a finer mesh, it will be shown that the proposed method can be
more efficient than the FEM.

5.1. LINEAR OSCILLATOR

The equation of motion to be considered here is given by

Xy = Xy, 1)
X2 = — X, —x1 +/,

where fis a zero mean, Gaussian, white-noise excitation with a constant spectral density value
So = 1/mn. The stationary response statistics are calculated using a mesh of points and
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Figure 1. Response statistics of a linear oscillator: ——, exact analytical solution, x, proposed method

(Ny =N, =21 O, FEM (N, = N, = 21); +, FEM (N, = N, = 61).

response domain such that Ny = N, =21 and — 501 < x; < 56; and — 50, < x, < 505,
where o, and ¢, are the standard deviations of the displacement (x;) and velocity (x,)
response respectively. The results for this situation are shown in Figure 1. There it may be seen
that the proposed method yields excellent agreement with the exact result over the main body
of the distribution and the “tails”. The FEM gives results that are in good agreement over the
main body, while the agreement at the tails deteriorates. For this reason the number of grid
points was increased so that N; = N, = 61. For clarity of presentation, these results are
shown only on the logarithmic axes in Figure 1. However, even with this increase, the FEM
still deviates visibly from the exact result at the tails of the displacement p.d.f. Taking into
account the CPU times presented in Table 1, it may be seen that, for the results shown, the
proposed method with N; = N, = 21 provides a more efficient numerical procedure than the
FEM with N, = N, = 61 for the system considered.

In this example, the displacement and velocity are statistically independent, and the
displacement and velocity distributions are identical. However, it can be seen in Figure 1 that
the FEM produces results for the displacement and velocity distributions that are not the
same. The reason for this can be explained by noting that the governing FPK equation
involves derivatives up to second order w.r.t. velocity and only first order w.r.t. displacement.
Thus, even though the j.p.d.f. is symmetric, the matrix appearing in equation (17) is altered
when the displacement and velocity are interchanged. As a consequence the calculated j.p.d.f.
is not guaranteed to be symmetric and the marginal distributions are not guaranteed to be the
same. The fact that this discrepancy is quite distinct in the FEM results even when an
increased number of grid points is present, highlights the approximate nature of the FEM.
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Figure 2. Contour plots of log;o(e;) for different numbers of grid points N (= N; = N,) and domain limits for
a linear oscillator: (a) FEM; (b) proposed method.

In contrast, the proposed method produces results for the displacement and velocity
distributions that, on the graphical scale used, are identical. This provides an indication of the
superior accuracy provided by the proposed method compared to the FEM.

Figures 2(a) and 2(b) show logarithmic contour plots of the error e; for different mesh sizes
and normalized domain limits using the FEM and proposed method respectively. In this
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example, the normalized domain limits correspond to the number of standard deviations on
either side of the mean used to represent the displacement-velocity response domain. For
example, a normalized domain limit of 6 corresponds to a mesh such that, — 60; < x; < 60
and — 60, < x, < 60,. Figure 2(a) shows that when using the FEM with a constant domain,
an increase in the number of grid points increases the accuracy of the solution. This is because
as the grid spacing decreases, the linear shape functions used within the FEM provide a better
approximation to the j.p.d.f. The same is true when the number of grid points is kept constant
and the size of the response domain is decreased. However, when the normalized response
domain is less than 5, the errors tend to increase. The reason for this is that for very small
response domains it is not possible to satisfy the normalization condition. Thus, it may be
concluded for the FEM that the finer the mesh of points, the more accurate the solution
becomes provided that the normalization condition is satisfied. In contrast, Figure 2(b)
indicates that the proposed method yields most accurate results when both the domain limits
and mesh size are increased. This may be explained by recalling that Shannon wavelets are
used as shape functions in the proposed method. Given that these shape functions decay quite
slowly, it is beneficial to increase the size of the response domain to ensure that the nodal
values at the edges of the mesh take the smallest values possible. Further, a corresponding
increase in the number of grid points will increase the resolution by increasing the Nyquist
frequency.

Comparing the results shown in Figures 2(a) and 2(b) it can be seen that the error obtained
using the FEM for each given value of mesh size and domain limits is an order of magnitude
larger than that obtained using the proposed method. Consequently, accurate results may be
obtained using a relatively large range of response domain sizes and grid mesh sizes,
suggesting that the proposed method is not sensitive to the choice of these parameters.
Furthermore, it can be seen that for any given domain limit the proposed method produces
results that are more accurate than the FEM using fewer grid points.

The results presented in Figure 2 are calculated using a measure of error that is applicable
to the main body of the distribution. To check the validity of the above conclusions over the
tails of the distribution it is necessary to consider the measure of error defined by equation
(40). Results obtained using this equation are shown in Figures 3(a) and 3(b) which show
logarithmic contour plots of error e, for different mesh sizes and normalized domain limits
using the FEM and proposed method respectively. These results are in qualitative agreement
with those shown in Figure 2 and provide evidence that the conclusions presented earlier for
error e, are similarly valid for error e,. Given the similarities between the errors ¢; and e, and
the fact that error e; provides more readable contour plots than e,, later discussions will be
limited to e; only.

5.2. DUFFING OSCILLATOR
The equation of motion to be considered here is given by
.)&1 == X2
Xy = — Xy — X1 —3X] +f, (42)

where fis a zero mean, Gaussian, white-noise excitation with a constant spectral density value
So = 1/m. Equation (42) represents a reasonably non-linear system that has mono-modal
displacement and velocity p.d.f’s. The stationary marginal distributions for this case are
shown in Figure 4, where the displacement and velocity domains are taken to be
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Figure 3. Contour plots of log;(e,) for different numbers of grid points N (= N; = N,) and domain limits for
a linear oscillator: (a) FEM; (b) proposed method.

—40; < xy <40y and — 50, < x, < 505, and the grid points such that N, = N, = 31.
With the exception of the extreme “tails” of the distribution, where the solution deviates from
the exact, the proposed method is seen to be in excellent agreement with the exact result with
a reasonably coarse mesh. In contrast, the FEM yields poor results over the tails of the
displacement and velocity p.d.f’s. To overcome these inaccuracies, an increased number of
grid points are used to represent the response domain (N; = N, = 61), and the results are
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(displacement only).

shown on the logarithmic axes in Figure 4. There it can be seen that the FEM now gives better
agreement over the main body of the distributions, but still underestimates the tails. From
a practical perspective it may be argued that the accuracy obtained using the FEM is
acceptable. From Table 1 it can be seen that the total CPU time associated with the proposed
method with Ny = N, = 31 is less than that associated with the FEM with N, = N, = 61.
Thus, for the results presented it can be deduced that the proposed method is more efficient
than the FEM.

Figures 5(a) and 5(b) shows logarithmic contour plots of error ¢; using different mesh sizes
and normalized domain limits for the FEM and the proposed method respectively. There the
normalized domain limits correspond to the number of standard deviations on either side of
the mean used to represent the displacement response domain, and the number of standard
deviations divided by 1-25 used to represent the velocity domain. For example, a normalized
domain limit of 5 corresponds to a mesh such thatt — 50; <x; <5¢; and

— 6250, < x, < 6:250,. In Figure 5 it can be seen that similar conclusions can be drawn for
the Duffing oscillator as for the linear oscillator, suggesting that the proposed method is
intrinsically more accurate than the FEM. Although not shown, similar findings have been
observed for the e, error, indicating that the proposed method yields accurate results
for the displacement p.d.f. for practical values of interest, that is values of probability density
down to 10°.

Naess and Johnsen [11] and Yu et al. [13] have used the path integral method produce
accurate results to probability density levels of 10~ '°. Figure 6 shows that by increasing
the number of grid points such that N; = N, = 61, and increasing the domain limits
to —8125¢; < x; <8125¢; and — 650, < x, < 6:50,, the proposed method yields
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Figure 5. Contour plots of log;o(e;) for different numbers of grid points N (= N; = N,) and domain limits for
a Duffing oscillator: (a) FEM; (b) proposed method.

accurate results down to very low probability levels. It may be noted, however, that these
results are in poor agreement with the exact distribution at the very tails of the distribution.
This is indicated in Figure 6 by the presence, on logarithmic axes, of a distinctive “shallow”
region at the extreme of the response domain. This region exists because outside of the
response domain considered, the assumed form for the j.p.d.f. ensures that the distribution
decays at the same (slow) rate as the Shannon wavelet (i.e., as 1/x). Similar inaccuracies occur
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(Ny = N, = 61); ----, equivalent Gaussian distribution.

when the FEM is used. As noted earlier, it is advisable to select the limits of the response
domain so that the less-accurate results, which occur at the tails, lic outside the region of
interest. However, it is interesting to note in this case that the calculated results remain in
close agreement with the exact result up to a critical point beyond which the gradient
suddenly increases. Given that the critical point is easily identifiable it suggests that for those
situations when the exact solution is not known the transition from regions of high accuracy
to low accuracy will be easily identifiable because of the sudden increase in the gradient of the
log p.d.f. Although not shown here, similar trends have been observed for other systems by the
authors.

5.3. OSCILLATOR WITH ENERGY-DEPENDENT DAMPING

The equation of motion to be considered here is given by (see reference [15])
X1 = Xa,
Xy = — fxy — alx] + x3)x; — X1 +/, (43)

where f(t) is a zero mean, Gaussian, white-noise excitation with a constant spectral value
So = 1/m. For the case considered let f = — 0-5, « = 0-125. The stationary response statistics
for this case are calculated using a response domain such that — 3¢y < x; < 30; and
— 30, < x, <30, and a grid mesh of points such that N; = N, =41. The marginal
distributions are identical in this case and the results obtained for this situation are shown
in Figure 7. From these results it can be seen that the proposed method gives excellent
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agreement with the exact result, both over the main body of the curve and up to the tails. The
FEM results underestimate the “tails” of the p.d.f’s and yield some negative values at the tails.
For this reason the number of grid points for the FEM was increased to Ny = N, = 61. As
with the linear oscillator, the approximate nature of the FEM is highlighted by the fact that
the results for the displacement and velocity p.d.f’s are visibly different when they should be
identical. It should also be noted that the proposed method provides superior accuracy
compared to the FEM, using fewer elements to achieve higher levels of accuracy. This
conclusion is further justified in Figure 8, which shows logarithmic plots for error e; with
different mesh sizes and normalized domain limits. There the normalized domain limits are
identical to those defined for the linear oscillator, and it can be seen for most values of domain
limit that the proposed method yields results to a higher level of accuracy than the FEM,
using a coarser mesh.

Despite the greater accuracy achieved using the proposed method it is pertinent to recall
the results shown in Figure 7. There it was observed that the proposed method required
a mesh size such that Ny = N, =41 (with — 30y < x; <30, and — 30, < x;, < 30,) to
achieve accurate results on the graphical scale used, while the FEM required N; = N, = 61.
A comparison of the CPU times taken to achieve these results indicates that the FEM
provides a more efficient solution procedure than the proposed method, provided that one is
willing to accept the accuracy indicated in Figure 7. Thus, although Figure 8 indicates that the
proposed method is inherently more accurate than the proposed method, it is not necessarily
more efficient, provided one is willing to accept a certain degree of inaccuracy.
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an oscillator with energy dependent damping: (a) FEM; (b) proposed method.

5.4. SHIP ROLL PROBLEM
The equation of motion to be considered here is given by (see references [3,6])

X1 = X,

Xy = — ax; — bxy|x,| — xy 4+ X7 +/, (“44)
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Figure 9. Response statistics for the ship roll problem (see Example 4): ——, simulation; x, proposed method

(N; =N, =41); O, FEM (N; = N, =41); +, FEM (N, = N, = 61); ----, equivalent Gaussian distribution.

where f(t) is a zero mean, Gaussian, white-noise excitation with a constant spectral value
So = 4476 x 10~ *. A highly non-linear case is considered [6] in which a = 0-1 and b = 1-0.
The stationary response statistics are calculated using a response domain such that
— 450, < xy <450, and — 450, < x, <450, and a grid mesh of points such that
N, = N, = 41. Unlike the previous examples, there is no exact analytical solution available.
For this reason the results obtained are compared with numerical simulation. The numerical
results are obtained by using the FFT technique to generate a time history and a fourth-order
Runge-Kutta scheme to calculate the corresponding time-history for the response. The
response p.d.f. is then calculated directly from the time-history for the response, where for the
results presented over 25 000 h of simulation were combined to ensure that a reliable estimate
of the tails of the distribution was obtained. From these simulations, the r.m.s. responses were
found to be 0-0804 and 0-0795 for x; and x, respectively. The marginal distributions for the
response are shown in Figure 9. From these results, it can be seen that the proposed method
gives excellent agreement with simulation, both over the main body and tails. Although the
FEM results are in good agreement with the velocity p.d.f,, they underestimate the “tails” of
the displacement p.d.f. For this reason the number of grid points for the FEM was increased
to Ny = N, = 61. These results provide the FEM with improved accuracy, but are still not as
accurate as the results obtained using the proposed method. Given that no exact result exists
for the system considered, it is not possible to assess the error using equations (39) and (40).
At this stage, as with the previous example, it is worthwhile considering the CPU times
associated with using the proposed method for the current example. Table 1 indicates that as
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the grid size increases the CPU time for the proposed method increases rapidly compared to
the FEM. Thus, although the proposed method provides increased accuracy compared to the
FEM, it is unlikely to provide a more efficient solution procedure unless the FEM requires
many more elements than the proposed method. For the case considered here (and the
previous example), this appears unlikely to be the case, and as a consequence the FEM is the
more efficient solution procedure, provided that a reduced level of accuracy is acceptable.
Recalling that the proposed method was observed to be more efficient for the linear and
Duffing oscillators considered and noting that these examples were not as non-linear as the
last two examples, it may be suggested from the results presented that the proposed method is
more efficient than the FEM for reasonably non-linear systems, while for more highly
non-linear systems the FEM will be more efficient.

6. CONCLUSIONS

A weighted residual approach to solving the stationary FPK equation has been presented
in which Shannon wavelets have been used as shape functions. The relationship between the
proposed method and the recently developed DAF approach has been considered and it was
found that the weighted residual approach yields equations which are identical to those
produced by a modified version of the DAF approach using Shannon wavelets to represent
the Dirac delta function. In essence, the link between the two methods arises from the
orthogonal properties of the Shannon wavelet and the relationship between the Shannon
wavelet and the Dirac delta function. For the systems considered, it was found that the
proposed method yielded results which were in excellent agreement with known exact results,
both over the main body of the marginal response distributions and the “tails”. Furthermore,
a comparison with the finite element method indicated that the proposed method required
fewer grid points to produce results of greater accuracy. Although better accuracy was
achieved using the proposed method, the FEM was found to be intrinsically less numerically
intensive for a comparable sized mesh due to the greater sparsity of the coefficient matrix.
(Further increases in efficiency may be obtained by using sparse matrix routines, but these
were not investigated here.) In some cases, this meant that similar degrees of accuracy could be
obtained more efficiently using the FEM with a suitably large number of grid points than
using the proposed method with fewer grid points. This was observed for the highly
non-linear cases considered. For the less non-linear systems considered the proposed method
yielded both more accurate and efficient results than the FEM. Thus, it is suggested that the
proposed method is preferable to the FEM for systems containing moderate non-linearities.

A future publication will consider the application of the proposed method to determine the
mean up-crossing rate and response statistics of higher order systems.
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